A Neural Network Classifier for Occluded Images
نویسندگان
چکیده
This paper proposes a neural network classifier which can automatically detect the occluded regions in the given image and replace that regions with the estimated values. An auto-associative memory is used to detect outliers such as pixels in the occluded regions. Certainties of each pixels are estimated by comparing the input pixels with the outputs of the auto-associative memory. The input values to the associative memory are replaced with the new values which are defined depending on the certainties. By repeating this process, we can get an image in which the pixel values of the occluded regions are replaced with the estimates. The proposed classifier is designed by integrating this associative memory with a simple classifier.
منابع مشابه
Detection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods
Introduction: In this paper, a method is presented to classify the breast cancer masses according to new geometric features. Methods: After obtaining digital breast mammogram images from the digital database for screening mammography (DDSM), image preprocessing was performed. Then, by using image processing methods, an algorithm was developed for automatic extracting of masses from other norma...
متن کاملEffective Feature Selection for Pre-Cancerous Cervix Lesions Using Artificial Neural Networks
Since most common form of cervical cancer starts with pre-cancerous changes, a flawless detection of these changes becomes an important issue to prevent and treat the cervix cancer. There are 2 ways to stop this disease from developing. One way is to find and treat pre-cancers before they become true cancers, and the other is to prevent the pre-cancers in the first place. The presented approach...
متن کاملA robust classifier combined with an auto-associative network for completing partly occluded images
This paper describes an approach for constructing a classifier which is unaffected by occlusions in images. We propose a method for integrating an auto-associative network into a simple classifier. As the auto-associative network can recall the original image from a partly occluded input image, we can employ it to detect occluded regions and complete the input image by replacing those regions w...
متن کاملDetection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods
Introduction: In this paper, a method is presented to classify the breast cancer masses according to new geometric features. Methods: After obtaining digital breast mammogram images from the digital database for screening mammography (DDSM), image preprocessing was performed. Then, by using image processing methods, an algorithm was developed for automatic extracting of masses from other norma...
متن کاملPersian Handwritten Digit Recognition Using Particle Swarm Probabilistic Neural Network
Handwritten digit recognition can be categorized as a classification problem. Probabilistic Neural Network (PNN) is one of the most effective and useful classifiers, which works based on Bayesian rule. In this paper, in order to recognize Persian (Farsi) handwritten digit recognition, a combination of intelligent clustering method and PNN has been utilized. Hoda database, which includes 80000 P...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002